RLBench: The Robot Learning Benchmark Learning Environment
We present a challenging new benchmark and learning-environment for robot learning: RLBench. The benchmark features 100 completely unique, hand-designed tasks ranging in difficulty, from simple target reaching and door opening, to longer multi-stage tasks, such as opening an oven and placing a tray in it. We provide an array of both proprioceptive observations and visual observations, which include rgb, depth, and segmentation masks from an over-the-shoulder stereo camera and an eye-in-hand monocular camera. Uniquely, each task comes with an infinite supply of demos through the use of motion planners operating on a series of waypoints given during task creation time; enabling an exciting flurry of demonstration-based learning. RLBench has been designed with scalability in mind; new tasks, along with their motion-planned demos, can be easily created and then verified by a series of tools, allowing users to submit their own tasks to the RLBench task repository. This large-scale benchmark aims to accelerate progress in a number of vision-guided manipulation research areas, including: reinforcement learning, imitation learning, multi-task learning, geometric computer vision, and in particular, few-shot learning. With the benchmark's breadth of tasks and demonstrations, we propose the first large-scale few-shot challenge in robotics. We hope that the scale and diversity of RLBench offers unparalleled research opportunities in the robot learning community and beyond.
READ FULL TEXT