Risk-Averse Equilibrium for Autonomous Vehicles in Stochastic Congestion Games

07/19/2020
by   Ali Yekkehkhany, et al.
0

The fast-growing market of autonomous vehicles, unmanned aerial vehicles, and fleets in general necessitates the design of smart and automatic navigation systems considering the stochastic latency along different paths in the traffic network. The longstanding shortest path problem in a deterministic network, whose counterpart in a congestion game setting is Wardrop equilibrium, has been studied extensively, but it is well known that finding the notion of an optimal path is challenging in a traffic network with stochastic arc delays. In this work, we propose three classes of risk-averse equilibria for an atomic stochastic congestion game in its general form where the arc delay distributions are load dependent and not necessarily independent of each other. The three classes are risk-averse equilibrium (RAE), mean-variance equilibrium (MVE), and conditional value at risk level α equilibrium (CVaR_αE) whose notions of risk-averse best responses are based on maximizing the probability of taking the shortest path, minimizing a linear combination of mean and variance of path delay, and minimizing the expected delay at a specified risky quantile of the delay distributions, respectively. We prove that for any finite stochastic atomic congestion game, the risk-averse, mean-variance, and CVaR_α equilibria exist. We show that for risk-averse travelers, the Braess paradox may not occur to the extent presented originally since players do not necessarily travel along the shortest path in expectation, but they take the uncertainty of travel time into consideration as well. We show through some examples that the price of anarchy can be improved when players are risk-averse and travel according to one of the three classes of risk-averse equilibria rather than the Wardrop equilibrium.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset