Representation Learning with Multisets

11/19/2019
by   Vasco Portilheiro, et al.
0

We study the problem of learning permutation invariant representations that can capture "flexible" notions of containment. We formalize this problem via a measure theoretic definition of multisets, and obtain a theoretically-motivated learning model. We propose training this model on a novel task: predicting the size of the symmetric difference (or intersection) between pairs of multisets. We demonstrate that our model not only performs very well on predicting containment relations (and more effectively predicts the sizes of symmetric differences and intersections than DeepSets-based approaches with unconstrained object representations), but that it also learns meaningful representations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro