Representaciones del aprendizaje reutilizando los gradientes de la retropropagacion

12/06/2020
by   Roberto Reyes-Ochoa, et al.
0

This work proposes an algorithm for taking advantage of backpropagation gradients to determine feature importance at different stages of training. Additionally, we propose a way to represent the learning process qualitatively. Experiments were performed over the Wisconsin cancer dataset provided by sklearn, and results showed an interesting convergence of the so called "learning gradients" towards the most important features. — Este trabajo propone el algoritmo de gradientes de aprendizaje para encontrar significado en las entradas de una red neuronal. Ademas, se propone una manera de evaluarlas por orden de importancia y representar el proceso de aprendizaje a traves de las etapas de entrenamiento. Los resultados obtenidos utilizan como referencia el conjunto de datos acerca de tumores malignos y benignos en Wisconsin. Esta referencia sirvio para detectar un patron en las variables mas importantes del modelo gracias, asi como su evolucion temporal.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro