Reinforcement and Imitation Learning via Interactive No-Regret Learning

06/23/2014
by   Stéphane Ross, et al.
0

Recent work has demonstrated that problems-- particularly imitation learning and structured prediction-- where a learner's predictions influence the input-distribution it is tested on can be naturally addressed by an interactive approach and analyzed using no-regret online learning. These approaches to imitation learning, however, neither require nor benefit from information about the cost of actions. We extend existing results in two directions: first, we develop an interactive imitation learning approach that leverages cost information; second, we extend the technique to address reinforcement learning. The results provide theoretical support to the commonly observed successes of online approximate policy iteration. Our approach suggests a broad new family of algorithms and provides a unifying view of existing techniques for imitation and reinforcement learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro