Redundant Logic Insertion and Fault Tolerance Improvement in Combinational Circuits
This paper presents a novel method to identify and insert redundant logic into a combinational circuit to improve its fault tolerance without having to replicate the entire circuit as is the case with conventional redundancy techniques. In this context, it is discussed how to estimate the fault masking capability of a combinational circuit using the truth-cum-fault enumeration table, and then it is shown how to identify the logic that can introduced to add redundancy into the original circuit without affecting its native functionality and with the aim of improving its fault tolerance though this would involve some trade-off in the design metrics. However, care should be taken while introducing redundant logic since redundant logic insertion may give rise to new internal nodes and faults on those may impact the fault tolerance of the resulting circuit. The combinational circuit that is considered and its redundant counterparts are all implemented in semi-custom design style using a 32/28nm CMOS digital cell library and their respective design metrics and fault tolerances are compared.
READ FULL TEXT