Recursive McCormick Linearization of Multilinear Programs

by   Arvind U. Raghunathan, et al.

Linear programming (LP) relaxations are widely employed in exact solution methods for multilinear programs (MLP). One example is the family of Recursive McCormick Linearization (RML) strategies, where bilinear products are substituted for artificial variables, which deliver a relaxation of the original problem when introduced together with concave and convex envelopes. In this article, we introduce the first systematic approach for identifying RMLs, in which we focus on the identification of linear relaxation with a small number of artificial variables and with strong LP bounds. We present a novel mechanism for representing all the possible RMLs, which we use to design an exact mixed-integer programming (MIP) formulation for the identification of minimum-size RMLs; we show that this problem is NP-hard in general, whereas a special case is fixed-parameter tractable. Moreover, we explore structural properties of our formulation to derive an exact MIP model that identifies RMLs of a given size with the best possible relaxation bound is optimal. Our numerical results on a collection of benchmarks indicate that our algorithms outperform the RML strategy implemented in state-of-the-art global optimization solvers.


page 1

page 2

page 3

page 4


Contextual Reserve Price Optimization in Auctions

We study the problem of learning a linear model to set the reserve price...

A scaleable projection-based branch-and-cut algorithm for the p-center problem

The p-center problem (pCP) is a fundamental problem in location science,...

LPQP for MAP: Putting LP Solvers to Better Use

MAP inference for general energy functions remains a challenging problem...

New commodity representations for multicommodity network flow problems: An application to the fixed-charge network design problem

When solving hard multicommodity network flow problems using an LP-based...

The role of rationality in integer-programming relaxations

For a finite set X ⊂ℤ^d that can be represented as X = Q ∩ℤ^d for some p...

Recovering Sign Bits of DCT Coefficients in Digital Images as an Optimization Problem

Recovering unknown, missing, damaged, distorted or lost information in D...

Partition-Based Convex Relaxations for Certifying the Robustness of ReLU Neural Networks

In this paper, we study certifying the robustness of ReLU neural network...

Please sign up or login with your details

Forgot password? Click here to reset