Quantum Monte Carlo algorithm for solving Black-Scholes PDEs for high-dimensional option pricing in finance and its proof of overcoming the curse of dimensionality
In this paper we provide a quantum Monte Carlo algorithm to solve high-dimensional Black-Scholes PDEs with correlation for high-dimensional option pricing. The payoff function of the option is of general form and is only required to be continuous and piece-wise affine (CPWA), which covers most of the relevant payoff functions used in finance. We provide a rigorous error analysis and complexity analysis of our algorithm. In particular, we prove that the computational complexity of our algorithm is bounded polynomially in the space dimension d of the PDE and the reciprocal of the prescribed accuracy ε and so demonstrate that our quantum Monte Carlo algorithm does not suffer from the curse of dimensionality.
READ FULL TEXT