Quantization in Spiking Neural Networks

05/13/2023
by   Bernhard A. Moser, et al.
0

In spiking neural networks (SNN), at each node, an incoming sequence of weighted Dirac pulses is converted into an output sequence of weighted Dirac pulses by a leaky-integrate-and-fire (LIF) neuron model based on spike aggregation and thresholding. We show that this mapping can be understood as a quantization operator and state a corresponding formula for the quantization error by means of the Alexiewicz norm. This analysis has implications for rethinking re-initialization in the LIF model, leading to the proposal of 'reset-to-mod' as a modulo-based reset variant.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset