Q-Learning for Mean-Field Controls

02/10/2020
by   Haotian Gu, et al.
0

Multi-agent reinforcement learning (MARL) has been applied to many challenging problems including two-team computer games, autonomous drivings, and real-time biddings. Despite the empirical success, there is a conspicuous absence of theoretical study of different MARL algorithms: this is mainly due to the curse of dimensionality caused by the exponential growth of the joint state-action space as the number of agents increases. Mean-field controls (MFC) with infinitely many agents and deterministic flows, meanwhile, provide good approximations to N-agent collaborative games in terms of both game values and optimal strategies. In this paper, we study the collaborative MARL under an MFC approximation framework: we develop a model-free kernel-based Q-learning algorithm (CDD-Q) and show that its convergence rate and sample complexity are independent of the number of agents. Our empirical studies on MFC examples demonstrate strong performances of CDD-Q. Moreover, the CDD-Q algorithm can be applied to a general class of Markov decision problems (MDPs) with deterministic dynamics and continuous state-action space.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset