Projection Pursuit Gaussian Process Regression

04/01/2020
by   Gecheng Chen, et al.
0

A primary goal of computer experiments is to reconstruct the function given by the computer code via scattered evaluations. Traditional isotropic Gaussian process models suffer from the curse of dimensionality, when the input dimension is high. Gaussian process models with additive correlation functions are scalable to dimensionality, but they are very restrictive as they only work for additive functions. In this work, we consider a projection pursuit model, in which the nonparametric part is driven by an additive Gaussian process regression. The dimension of the additive function is chosen to be higher than the original input dimension. We show that this dimension expansion can help approximate more complex functions. A gradient descent algorithm is proposed to maximize the likelihood function. Simulation studies show that the proposed method outperforms the traditional Gaussian process models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset