Prediction Focused Topic Models for Electronic Health Records

11/15/2019
by   Jason Ren, et al.
0

Electronic Health Record (EHR) data can be represented as discrete counts over a high dimensional set of possible procedures, diagnoses, and medications. Supervised topic models present an attractive option for incorporating EHR data as features into a prediction problem: given a patient's record, we estimate a set of latent factors that are predictive of the response variable. However, existing methods for supervised topic modeling struggle to balance prediction quality and coherence of the latent factors. We introduce a novel approach, the prediction-focused topic model, that uses the supervisory signal to retain only features that improve, or do not hinder, prediction performance. By removing features with irrelevant signal, the topic model is able to learn task-relevant, interpretable topics. We demonstrate on a EHR dataset and a movie review dataset that compared to existing approaches, prediction-focused topic models are able to learn much more coherent topics while maintaining competitive predictions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro