Log In Sign Up

Predicting Sharp and Accurate Occlusion Boundaries in Monocular Depth Estimation Using Displacement Fields

by   Michaël Ramamonjisoa, et al.

Current methods for depth map prediction from monocular images tend to predict smooth, poorly localized contours for the occlusion boundaries in the input image. This is unfortunate as occlusion boundaries are important cues to recognize objects, and as we show, may lead to a way to discover new objects from scene reconstruction. To improve predicted depth maps, recent methods rely on various forms of filtering or predict an additive residual depth map to refine a first estimate. We instead learn to predict, given a depth map predicted by some reconstruction method, a 2D displacement field able to re-sample pixels around the occlusion boundaries into sharper reconstructions. Our method can be applied to the output of any depth estimation method, in an end-to-end trainable fashion. For evaluation, we manually annotated the occlusion boundaries in all the images in the test split of popular NYUv2-Depth dataset. We show that our approach improves the localization of occlusion boundaries for all state-of-the-art monocular depth estimation methods that we could evaluate, without degrading the depth accuracy for the rest of the images.


page 1

page 2

page 3

page 4

page 6


P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior

Monocular depth estimation is vital for scene understanding and downstre...

Pixel-Pair Occlusion Relationship Map(P2ORM): Formulation, Inference Application

We formalize concepts around geometric occlusion in 2D images (i.e., ign...

Occlusion-Aware Depth Estimation with Adaptive Normal Constraints

We present a new learning-based method for multi-frame depth estimation ...

DynOcc: Learning Single-View Depth from Dynamic Occlusion Cues

Recently, significant progress has been made in single-view depth estima...

Future Localization from an Egocentric Depth Image

This paper presents a method for future localization: to predict a set o...

Object-aware Monocular Depth Prediction with Instance Convolutions

With the advent of deep learning, estimating depth from a single RGB ima...

Multimodal In-bed Pose and Shape Estimation under the Blankets

Humans spend vast hours in bed – about one-third of the lifetime on aver...

Code Repositories


Official implementation of paper "Predicting Sharp and Accurate Occlusion Boundaries in Monocular Depth Estimation Using Displacement Fields" (CVPR2020)

view repo


About Official implementation of CVPR2020 paper "predicting sharp and accurate occlusion boundaries in monocular depth estimation using displacement fields"

view repo