Phase recovery with Bregman divergences for audio source separation

10/20/2020
by   Paul Magron, et al.
0

Time-frequency audio source separation is usually achieved by estimating the short-time Fourier transform (STFT) magnitude of each source, and then applying a phase recovery algorithm to retrieve time-domain signals. In particular, the multiple input spectrogram inversion (MISI) algorithm has shown good performance in several recent works. This algorithm minimizes a quadratic reconstruction error between magnitude spectrograms. However, this loss does not properly account for some perceptual properties of audio, and alternative discrepancy measures such as beta-divergences have been preferred in many settings. In this paper, we propose to reformulate phase recovery in audio source separation as a minimization problem involving Bregman divergences. To optimize the resulting objective, we derive a projected gradient descent algorithm. Experiments conducted on a speech enhancement task show that this approach outperforms MISI for several alternative losses, which highlights their relevance for audio source separation applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset