Performance of Dual-Augmented Lagrangian Method and Common Spatial Patterns applied in classification of Motor-Imagery BCI

10/13/2020
by   Aleksandar Miladinović, et al.
0

Motor-imagery based brain-computer interfaces (MI-BCI) have the potential to become ground-breaking technologies for neurorehabilitation, the reestablishment of non-muscular communication and commands for patients suffering from neuronal disorders and disabilities, but also outside of clinical practice, for video game control and other entertainment purposes. However, due to the noisy nature of the used EEG signal, reliable BCI systems require specialized procedures for features optimization and extraction. This paper compares the two approaches, the Common Spatial Patterns with Linear Discriminant Analysis classifier (CSP-LDA), widely used in BCI for extracting features in Motor Imagery (MI) tasks, and the Dual-Augmented Lagrangian (DAL) framework with three different regularization methods: group sparsity with row groups (DAL-GLR), dual-spectrum (DAL-DS) and l1-norm regularization (DAL-L1). The test has been performed on 7 healthy subjects performing 5 BCI-MI sessions each. The preliminary results show that DAL-GLR method outperforms standard CSP-LDA, presenting 6.9 demonstrate the advantage of DAL framework for MI-BCI.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro