Optimizable Object Reconstruction from a Single View

11/29/2018
by   Kejie Li, et al.
4

3D shape reconstruction from a single image is a highly ill-posed problem. A number of current deep learning based systems aim to solve the shape reconstruction and shape pose problems by learning an end-to-end network to perform feed-forward inference. More traditional (non-deep learning) methods cast the problem in an iterative optimization framework. In this paper, inspired by these more traditional shape-prior-based approaches, which separate the 2D recognition and 3D reconstruction, we develop a system that leverages the power of both feed-forward and iterative approaches. Our framework uses the power of deep learning to capture 3D shape information from training data and provide high-quality initialization, while allowing both image evidence and shape priors to influence iterative refinement at inference time. Specifically, we employ an auto-encoder to learn a latent space of object shapes, a CNN that maps an image to the latent space, another CNN to predict 2D keypoints to recover object pose using PnP, and a segmentation network to predict an object's silhouette from an RGB image. At inference time these components provide high-quality initial estimates of the shape and pose, which are then further optimized based on the silhouette-shape constraint and a probabilistic shape prior learned on the latent space. Our experiments show that this optimizable inference framework achieves state-of-the-art results on a large benchmarking dataset with real images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro