Optimal Scaling of Metropolis Algorithms on General Target Distributions

04/27/2019
by   Jun Yang, et al.
0

The main limitation of the existing optimal scaling results for Metropolis--Hastings algorithms is that the assumptions on the target distribution are unrealistic. In this paper, we consider optimal scaling of random-walk Metropolis algorithms on general target distributions in high dimensions arising from realistic MCMC models. For optimal scaling by maximizing expected squared jumping distance (ESJD), we show the asymptotically optimal acceptance rate 0.234 can be obtained under general realistic sufficient conditions on the target distribution. The new sufficient conditions are easy to be verified and may hold for some general classes of realistic MCMC models, which substantially generalize the product i.i.d. condition required in most existing literature of optimal scaling. Furthermore, we show one-dimensional diffusion limits can be obtained under slightly stronger conditions, which still allow dependent coordinates of the target distribution. We also connect the new diffusion limit results to complexity bounds of Metropolis algorithms in high dimensions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset