On the Optimality, Stability, and Feasibility of Control Barrier Functions: An Adaptive Learning-Based Approach

05/05/2023
by   Alaa Eddine Chriat, et al.
1

Safety has been a critical issue for the deployment of learning-based approaches in real-world applications. To address this issue, control barrier function (CBF) and its variants have attracted extensive attention for safety-critical control. However, due to the myopic one-step nature of CBF and the lack of principled methods to design the class-𝒦 functions, there are still fundamental limitations of current CBFs: optimality, stability, and feasibility. In this paper, we proposed a novel and unified approach to address these limitations with Adaptive Multi-step Control Barrier Function (AM-CBF), where we parameterize the class-𝒦 function by a neural network and train it together with the reinforcement learning policy. Moreover, to mitigate the myopic nature, we propose a novel multi-step training and single-step execution paradigm to make CBF farsighted while the execution remains solving a single-step convex quadratic program. Our method is evaluated on the first and second-order systems in various scenarios, where our approach outperforms the conventional CBF both qualitatively and quantitatively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset