On the numeric stability of the SFA implementation sfa-tk

12/06/2009
by   Wolfgang Konen, et al.
0

Slow feature analysis (SFA) is a method for extracting slowly varying features from a quickly varying multidimensional signal. An open source Matlab-implementation sfa-tk makes SFA easily useable. We show here that under certain circumstances, namely when the covariance matrix of the nonlinearly expanded data does not have full rank, this implementation runs into numerical instabilities. We propse a modified algorithm based on singular value decomposition (SVD) which is free of those instabilities even in the case where the rank of the matrix is only less than 10 that an alternative way of handling the numerical problems is to inject a small amount of noise into the multidimensional input signal which can restore a rank-deficient covariance matrix to full rank, however at the price of modifying the original data and the need for noise parameter tuning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset