On the infinite-depth limit of finite-width neural networks

10/03/2022
by   Soufiane Hayou, et al.
0

In this paper, we study the infinite-depth limit of finite-width residual neural networks with random Gaussian weights. With proper scaling, we show that by fixing the width and taking the depth to infinity, the vector of pre-activations converges in distribution to a zero-drift diffusion process. Unlike the infinite-width limit where the pre-activation converge weakly to a Gaussian random variable, we show that the infinite-depth limit yields different distributions depending on the choice of the activation function. We document two cases where these distributions have closed-form (different) expressions. We further show an intriguing phase-transition phenomenon of the post-activation norms when the width increases from 3 to 4. Lastly, we study the sequential limit infinite-depth-then-infinite-width, and show some key differences with the more commonly studied infinite-width-then-infinite-depth limit.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset