On the Efficiency of Test Suite based Program Repair: A Systematic Assessment of 16 Automated Repair Systems for Java Programs

08/03/2020 ∙ by Kui Liu, et al. ∙ 0

Test-based automated program repair has been a prolific field of research in software engineering in the last decade. Many approaches have indeed been proposed, which leverage test suites as a weak, but affordable, approximation to program specifications. Although the literature regularly sets new records on the number of benchmark bugs that can be fixed, several studies increasingly raise concerns about the limitations and biases of state-of-the-art approaches. For example, the correctness of generated patches has been questioned in a number of studies, while other researchers pointed out that evaluation schemes may be misleading with respect to the processing of fault localization results. Nevertheless, there is little work addressing the efficiency of patch generation, with regard to the practicality of program repair. In this paper, we fill this gap in the literature, by providing an extensive review on the efficiency of test suite based program repair. Our objective is to assess the number of generated patch candidates, since this information is correlated to (1) the strategy to traverse the search space efficiently in order to select sensical repair attempts, (2) the strategy to minimize the test effort for identifying a plausible patch, (3) as well as the strategy to prioritize the generation of a correct patch. To that end, we perform a large-scale empirical study on the efficiency, in terms of quantity of generated patch candidates of the 16 open-source repair tools for Java programs. The experiments are carefully conducted under the same fault localization configurations to limit biases.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 7

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.