On the accuracy of interpolation based on single-layer artificial neural networks
In the present paper, we consider one-hidden layer ANNs with a feedforward architecture, also referred to as shallow or two-layer networks, so that the structure is determined by the number and types of neurons. The determination of the parameters that define the function, called training, is done via the resolution of the approximation problem, so by imposing the interpolation through a set of specific nodes. We present the case where the parameters are trained using a procedure that is referred to as Extreme Learning Machine (ELM) that leads to a linear interpolation problem. In such hypotheses, the existence of an ANN interpolating function is guaranteed. The focus is then on the accuracy of the interpolation outside of the given sampling interpolation nodes when they are the equispaced, the Chebychev, and the randomly selected ones. The study is motivated by the well-known bell-shaped Runge example, which makes it clear that the construction of a global interpolating polynomial is accurate only if trained on suitably chosen nodes, ad example the Chebychev ones. In order to evaluate the behavior when growing the number of interpolation nodes, we raise the number of neurons in our network and compare it with the interpolating polynomial. We test using Runge's function and other well-known examples with different regularities. As expected, the accuracy of the approximation with a global polynomial increases only if the Chebychev nodes are considered. Instead, the error for the ANN interpolating function always decays and in most cases we observe that the convergence follows what is observed in the polynomial case on Chebychev nodes, despite the set of nodes used for training.
READ FULL TEXT