On Neurons Invariant to Sentence Structural Changes in Neural Machine Translation
To gain insight into the role neurons play, we study the activation patterns corresponding to meaning-preserving paraphrases (e.g., active-passive). We compile a dataset of controlled syntactic paraphrases in English with their reference German translations and demonstrate our model-agnostic approach with the Transformer translation model. First, we identify neurons that correlate across paraphrases and dissect the observed correlation into possible confounds. Although lower-level components are found as the cause of similar activations, no sentence-level semantics or syntax are detected locally. Later, we manipulate neuron activations to influence translation towards a particular syntactic form. We find that a simple value shift is effective, and more so when many neurons are modified. These suggest that complex syntactic constructions are indeed encoded in the model. We conclude by discussing how to better manipulate it using the correlations we first obtained.
READ FULL TEXT