DeepAI AI Chat
Log In Sign Up

On Many-to-Many Mapping Between Concordance Correlation Coefficient and Mean Square Error

02/14/2019
by   Vedhas Pandit, et al.
4

The concordance correlation coefficient (CCC) is one of the most widely used reproducibility indices, introduced by Lin in 1989. In addition to its extensive use in assay validation, CCC serves various different purposes in other multivariate population-related tasks. For example, it is often used as a metric to quantify an inter-rater agreement. It is also often used as a performance metric for prediction problems. In terms of the cost function, however, there has been hardly any attempt to design one to train the predictive deep learning models. In this paper, we present a family of lightweight cost functions that aim to also maximise CCC, when minimising the prediction errors. To this end, we first reformulate CCC in terms of the errors in the prediction; and then as a logical next step, in terms of the sequence of the fixed set of errors. To elucidate our motivation and the results we obtain through these error rearrangements, the data we use is the set of gold standard annotations from a well-known database called `Automatic Sentiment Analysis in the Wild' (SEWA), popular thanks to its use in the latest Audio/Visual Emotion Challenges (AVEC'17 and AVEC'18). We also present some new and interesting mathematical paradoxes we have discovered through this CCC reformulation endeavour.

READ FULL TEXT

page 1

page 2

page 3

page 4

01/02/2022

LSTM Architecture for Oil Stocks Prices Prediction

Oil companies are among the largest companies in the world whose economi...
04/30/2018

Automatic Metric Validation for Grammatical Error Correction

Metric validation in Grammatical Error Correction (GEC) is currently don...
09/08/2022

Using Multivariate Linear Regression for Biochemical Oxygen Demand Prediction in Waste Water

There exist opportunities for Multivariate Linear Regression (MLR) in th...
11/03/2022

Martian Ionosphere Electron Density Prediction Using Bagged Trees

The availability of Martian atmospheric data provided by several Martian...
11/02/2020

Multimodal Continuous Emotion Recognition using Deep Multi-Task Learning with Correlation Loss

In this study, we focus on continuous emotion recognition using body mot...
11/13/2019

Kriging prediction with isotropic Matérn correlations: robustness and experimental design

We investigate the prediction performance of the kriging predictors. We ...
10/05/2013

Contraction Principle based Robust Iterative Algorithms for Machine Learning

Iterative algorithms are ubiquitous in the field of data mining. Widely ...