Log In Sign Up

On Applying Machine Learning/Object Detection Models for Analysing Digitally Captured Physical Prototypes from Engineering Design Projects

by   Jorgen F. Erichsen, et al.

While computer vision has received increasing attention in computer science over the last decade, there are few efforts in applying this to leverage engineering design research. Existing datasets and technologies allow researchers to capture and access more observations and video files, hence analysis is becoming a limiting factor. Therefore, this paper is investigating the application of machine learning, namely object detection methods to aid in the analysis of physical porotypes. With access to a large dataset of digitally captured physical prototypes from early-stage development projects (5950 images from 850 prototypes), the authors investigate applications that can be used for analysing this dataset. The authors retrained two pre-trained object detection models from two known frameworks, the TensorFlow Object Detection API and Darknet, using custom image sets of images of physical prototypes. As a result, a proof-of-concept of four trained models are presented; two models for detecting samples of wood-based sheet materials and two models for detecting samples containing microcontrollers. All models are evaluated using standard metrics for object detection model performance and the applicability of using object detection models in engineering design research is discussed. Results indicate that the models can successfully classify the type of material and type of pre-made component, respectively. However, more work is needed to fully integrate object detection models in the engineering design analysis workflow. The authors also extrapolate that the use of object detection for analysing images of physical prototypes will substantially reduce the effort required for analysing large datasets in engineering design research.


page 5

page 8

page 9


KOLOMVERSE: KRISO open large-scale image dataset for object detection in the maritime universe

Over the years, datasets have been developed for various object detectio...

NPU-BOLT: A Dataset for Bolt Object Detection in Natural Scene Images

Bolt joints are very common and important in engineering structures. Due...

Object detection-based inspection of power line insulators: Incipient fault detection in the low data-regime

Deep learning-based object detection is a powerful approach for detectin...

Performance of object recognition in wearable videos

Wearable technologies are enabling plenty of new applications of compute...

TensorFlow with user friendly Graphical Framework for object detection API

TensorFlow is an open-source framework for deep learning dataflow and co...

Wildfire Smoke Detection with Computer Vision

Wildfires are becoming more frequent and their effects more devastating ...

Seeing without Looking: Analysis Pipeline for Child Sexual Abuse Datasets

The online sharing and viewing of Child Sexual Abuse Material (CSAM) are...