Obtaining Membership Functions from a Neuron Fuzzy System extended by Kohonen Network

03/29/2005
by   Angelo Luis Pagliosa, et al.
0

This article presents the Neo-Fuzzy-Neuron Modified by Kohonen Network (NFN-MK), an hybrid computational model that combines fuzzy system technique and artificial neural networks. Its main task consists in the automatic generation of membership functions, in particular, triangle forms, aiming a dynamic modeling of a system. The model is tested by simulating real systems, here represented by a nonlinear mathematical function. Comparison with the results obtained by traditional neural networks, and correlated studies of neurofuzzy systems applied in system identification area, shows that the NFN-MK model has a similar performance, despite its greater simplicity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro