Neuronal Cell Type Classification using Deep Learning

06/01/2023
by   Ofek Ophir, et al.
0

The brain is likely the most complex organ, given the variety of functions it controls, the number of cells it comprises, and their corresponding diversity. Studying and identifying neurons, the brain's primary building blocks, is a crucial milestone and essential for understanding brain function in health and disease. Recent developments in machine learning have provided advanced abilities for classifying neurons. However, these methods remain black boxes with no explainability and reasoning. This paper aims to provide a robust and explainable deep-learning framework to classify neurons based on their electrophysiological activity. Our analysis is performed on data provided by the Allen Cell Types database containing a survey of biological features derived from single-cell recordings of mice and humans. First, we classify neuronal cell types of mice data to identify excitatory and inhibitory neurons. Then, neurons are categorized to their broad types in humans using domain adaptation from mice data. Lastly, neurons are classified into sub-types based on transgenic mouse lines using deep neural networks in an explainable fashion. We show state-of-the-art results in a dendrite-type classification of excitatory vs. inhibitory neurons and transgenic mouse lines classification. The model is also inherently interpretable, revealing the correlations between neuronal types and their electrophysiological properties.

READ FULL TEXT

page 2

page 5

page 8

page 10

page 11

research
09/30/2022

Disentangling with Biological Constraints: A Theory of Functional Cell Types

Neurons in the brain are often finely tuned for specific task variables....
research
03/28/2020

Objective Multi-variable Classification and Inference of Biological Neuronal Networks

Classification of biological neuron types and networks poses challenges ...
research
01/11/2023

Self-supervised Learning for Segmentation and Quantification of Dopamine Neurons in Parkinson's Disease

Parkinson's Disease (PD) is the second most common neurodegenerative dis...
research
11/22/2019

Artificial neural networks in action for an automated cell-type classification of biological neural networks

In this work we address the problem of neuronal cell-type classification...
research
07/09/2018

Exploring Brain-wide Development of Inhibition through Deep Learning

We introduce here a fully automated convolutional neural network-based m...
research
11/06/2019

A coupled autoencoder approach for multi-modal analysis of cell types

Recent developments in high throughput profiling of individual neurons h...
research
12/01/2022

A Topological Deep Learning Framework for Neural Spike Decoding

The brain's spatial orientation system uses different neuron ensembles t...

Please sign up or login with your details

Forgot password? Click here to reset