NeuroDiff: Scalable Differential Verification of Neural Networks using Fine-Grained Approximation

09/21/2020
by   Brandon Paulsen, et al.
0

As neural networks make their way into safety-critical systems, where misbehavior can lead to catastrophes, there is a growing interest in certifying the equivalence of two structurally similar neural networks. For example, compression techniques are often used in practice for deploying trained neural networks on computationally- and energy-constrained devices, which raises the question of how faithfully the compressed network mimics the original network. Unfortunately, existing methods either focus on verifying a single network or rely on loose approximations to prove the equivalence of two networks. Due to overly conservative approximation, differential verification lacks scalability in terms of both accuracy and computational cost. To overcome these problems, we propose NeuroDiff, a symbolic and fine-grained approximation technique that drastically increases the accuracy of differential verification while achieving many orders-of-magnitude speedup. NeuroDiff has two key contributions. The first one is new convex approximations that more accurately bound the difference neurons of two networks under all possible inputs. The second one is judicious use of symbolic variables to represent neurons whose difference bounds have accumulated significant error. We also find that these two techniques are complementary, i.e., when combined, the benefit is greater than the sum of their individual benefits. We have evaluated NeuroDiff on a variety of differential verification tasks. Our results show that NeuroDiff is up to 1000X faster and 5X more accurate than the state-of-the-art tool.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 4

page 7

01/10/2020

ReluDiff: Differential Verification of Deep Neural Networks

As deep neural networks are increasingly being deployed in practice, the...
12/13/2021

Geometric Path Enumeration for Equivalence Verification of Neural Networks

As neural networks (NNs) are increasingly introduced into safety-critica...
02/26/2019

Analyzing Deep Neural Networks with Symbolic Propagation: Towards Higher Precision and Faster Verification

Deep neural networks (DNNs) have been shown lack of robustness for the v...
04/26/2021

Fast Falsification of Neural Networks using Property Directed Testing

Neural networks are now extensively used in perception, prediction and c...
07/20/2020

DiffRNN: Differential Verification of Recurrent Neural Networks

Recurrent neural networks (RNNs) such as Long Short Term Memory (LSTM) n...
10/09/2017

Verification of Binarized Neural Networks via Inter-Neuron Factoring

We study the problem of formal verification of Binarized Neural Networks...
10/09/2017

Verification of Binarized Neural Networks

We study the problem of formal verification of Binarized Neural Networks...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.