DeepAI AI Chat
Log In Sign Up

Network of Evolvable Neural Units: Evolving to Learn at a Synaptic Level

12/16/2019
by   Paul Bertens, et al.
20

Although Deep Neural Networks have seen great success in recent years through various changes in overall architectures and optimization strategies, their fundamental underlying design remains largely unchanged. Computational neuroscience on the other hand provides more biologically realistic models of neural processing mechanisms, but they are still high level abstractions of the actual experimentally observed behaviour. Here a model is proposed that bridges Neuroscience, Machine Learning and Evolutionary Algorithms to evolve individual soma and synaptic compartment models of neurons in a scalable manner. Instead of attempting to manually derive models for all the observed complexity and diversity in neural processing, we propose an Evolvable Neural Unit (ENU) that can approximate the function of each individual neuron and synapse. We demonstrate that this type of unit can be evolved to mimic Integrate-And-Fire neurons and synaptic Spike-Timing-Dependent Plasticity. Additionally, by constructing a new type of neural network where each synapse and neuron is such an evolvable neural unit, we show it is possible to evolve an agent capable of learning to solve a T-maze environment task. This network independently discovers spiking dynamics and reinforcement type learning rules, opening up a new path towards biologically inspired artificial intelligence.

READ FULL TEXT

page 5

page 13

page 14

03/09/2020

Spike-Timing-Dependent Inference of Synaptic Weights

A potential solution to the weight transport problem, which questions th...
07/30/2019

Temporal coding in spiking neural networks with alpha synaptic function

The timing of individual neuronal spikes is essential for biological bra...
03/25/2019

Towards a framework for the evolution of artificial general intelligence

In this work, a novel framework for the emergence of general intelligenc...
04/02/2019

Evolving Plasticity for Autonomous Learning under Changing Environmental Conditions

A fundamental aspect of learning in biological neural networks (BNNs) is...
09/14/2022

Sketch of a novel approach to a neural model

In this paper, we lay out a novel model of neuroplasticity in the form o...
04/21/2015

Learning Opposites with Evolving Rules

The idea of opposition-based learning was introduced 10 years ago. Since...
02/08/2021

Evolving Neuronal Plasticity Rules using Cartesian Genetic Programming

We formulate the search for phenomenological models of synaptic plastici...

Code Repositories

Evolvable-Neural-Units

Neural Unit based on Synaptic Level


view repo