Nengo and low-power AI hardware for robust, embedded neurorobotics

07/20/2020
by   Travis DeWolf, et al.
0

In this paper we demonstrate how the Nengo neural modeling and simulation libraries enable users to quickly develop robotic perception and action neural networks for simulation on neuromorphic hardware using familiar tools, such as Keras and Python. We identify four primary challenges in building robust, embedded neurorobotic systems: 1) developing infrastructure for interfacing with the environment and sensors; 2) processing task specific sensory signals; 3) generating robust, explainable control signals; and 4) compiling neural networks to run on target hardware. Nengo helps to address these challenges by: 1) providing the NengoInterfaces library, which defines a simple but powerful API for users to interact with simulations and hardware; 2) providing the NengoDL library, which lets users use the Keras and TensorFlow API to develop Nengo models; 3) implementing the Neural Engineering Framework, which provides white-box methods for implementing known functions and circuits; and 4) providing multiple backend libraries, such as NengoLoihi, that enable users to compile the same model to different hardware. We present two examples using Nengo to develop neural networks that run on CPUs, GPUs, and Intel's neuromorphic chip, Loihi, to demonstrate this workflow. The first example is an end-to-end spiking neural network that controls a rover simulated in Mujoco. The network integrates a deep convolutional network that processes visual input from mounted cameras to track a target, and a control system implementing steering and drive functions to guide the rover to the target. The second example augments a force-based operational space controller with neural adaptive control to improve performance during a reaching task using a real-world Kinova Jaco2 robotic arm. Code and details are provided with the intent of enabling other researchers to build their own neurorobotic systems.

READ FULL TEXT
research
08/26/2020

Robust robotic control on the neuromorphic research chip Loihi

Neuromorphic hardware has several promising advantages compared to von N...
research
03/03/2021

A toolbox for neuromorphic sensing in robotics

The third generation of artificial intelligence (AI) introduced by neuro...
research
03/11/2019

A Spiking Network for Inference of Relations Trained with Neuromorphic Backpropagation

The increasing need for intelligent sensors in a wide range of everyday ...
research
08/11/2021

Event-based PID controller fully realized in neuromorphic hardware: a one DoF study

Spiking Neuronal Networks (SNNs) realized in neuromorphic hardware lead ...
research
01/18/2021

A Spiking Central Pattern Generator for the control of a simulated lamprey robot running on SpiNNaker and Loihi neuromorphic boards

Central Pattern Generators (CPGs) models have been long used to investig...
research
05/04/2021

Simplified Klinokinesis using Spiking Neural Networks for Resource-Constrained Navigation on the Neuromorphic Processor Loihi

C. elegans shows chemotaxis using klinokinesis where the worm senses the...
research
10/27/2018

Fabrik: An Online Collaborative Neural Network Editor

We present Fabrik, an online neural network editor that provides tools t...

Please sign up or login with your details

Forgot password? Click here to reset