Necessary and Sufficient Null Space Condition for Nuclear Norm Minimization in Low-Rank Matrix Recovery

by   Jirong Yi, et al.

Low-rank matrix recovery has found many applications in science and engineering such as machine learning, signal processing, collaborative filtering, system identification, and Euclidean embedding. But the low-rank matrix recovery problem is an NP hard problem and thus challenging. A commonly used heuristic approach is the nuclear norm minimization. In [12,14,15], the authors established the necessary and sufficient null space conditions for nuclear norm minimization to recover every possible low-rank matrix with rank at most r (the strong null space condition). In addition, in [12], Oymak et al. established a null space condition for successful recovery of a given low-rank matrix (the weak null space condition) using nuclear norm minimization, and derived the phase transition for the nuclear norm minimization. In this paper, we show that the weak null space condition in [12] is only a sufficient condition for successful matrix recovery using nuclear norm minimization, and is not a necessary condition as claimed in [12]. In this paper, we further give a weak null space condition for low-rank matrix recovery, which is both necessary and sufficient for the success of nuclear norm minimization. At the core of our derivation are an inequality for characterizing the nuclear norms of block matrices, and the conditions for equality to hold in that inequality.


page 1

page 2

page 3

page 4


An Optimal Condition of Robust Low-rank Matrices Recovery

In this paper we investigate the reconstruction conditions of nuclear no...

Necessary and Sufficient Conditions for Success of the Nuclear Norm Heuristic for Rank Minimization

Minimizing the rank of a matrix subject to constraints is a challenging ...

New Null Space Results and Recovery Thresholds for Matrix Rank Minimization

Nuclear norm minimization (NNM) has recently gained significant attentio...

Block-sparse Recovery of Semidefinite Systems and Generalized Null Space Conditions

This article considers the recovery of low-rank matrices via a convex nu...

Low-rank Matrix Recovery With Unknown Correspondence

We study a matrix recovery problem with unknown correspondence: given th...

Deterministic Completion of Rectangular Matrices Using Ramanujan Bigraphs – II: Explicit Constructions and Phase Transitions

Matrix completion is a part of compressed sensing, and refers to determi...

Please sign up or login with your details

Forgot password? Click here to reset