DeepAI
Log In Sign Up

NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge

03/21/2021
by   Ali Agha, et al.
11

This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved 2nd and 1st place, respectively. We also discuss CoSTAR's demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including: (i) geometric and semantic environment mapping; (ii) a multi-modal positioning system; (iii) traversability analysis and local planning; (iv) global motion planning and exploration behavior; (i) risk-aware mission planning; (vi) networking and decentralized reasoning; and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g. wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.

READ FULL TEXT

page 3

page 5

page 7

page 22

page 25

page 26

page 32

page 34

02/10/2021

PLGRIM: Hierarchical Value Learning for Large-scale Exploration in Unknown Environments

In order for a robot to explore an unknown environment autonomously, it ...
10/24/2019

Task-Motion Planning for Navigation in Belief Space

We present an integrated Task-Motion Planning (TMP) framework for naviga...
10/19/2020

Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environments with Legged Locomotion

This paper serves as one of the first efforts to enable large-scale and ...
09/05/2019

EPANer Team Description Paper for World Robot Challenge 2020

This paper presents the research focus and ideas incorporated in the EPA...
06/05/2022

ACHORD: Communication-Aware Multi-Robot Coordination with Intermittent Connectivity

Communication is an important capability for multi-robot exploration bec...
09/12/2022

Risk-aware Meta-level Decision Making for Exploration Under Uncertainty

Robotic exploration of unknown environments is fundamentally a problem o...