MultiInstruct: Improving Multi-Modal Zero-Shot Learning via Instruction Tuning
Instruction tuning, a new learning paradigm that fine-tunes pre-trained language models on tasks specified through instructions, has shown promising zero-shot performance on various natural language processing tasks. However, it's still not explored for vision and multimodal tasks. In this work, we introduce MultiInstruct, the first multimodal instruction tuning benchmark dataset that consists of 47 diverse multimodal tasks covering 11 broad categories. Each task is designed at least with 5,000 instances (input-out pairs) from existing open-source datasets and 5 expert-written instructions. We take OFA as the base pre-trained model for multimodal instruction tuning, and to improve its performance, we explore multiple transfer learning strategies to leverage the large-scale Natural Instructions dataset. Experimental results demonstrate its strong zero-shot performance on various unseen multimodal tasks and the benefit of transfer learning from text-only instructions. We also design a new evaluation metric: Sensitivity, to evaluate how sensitive the model is to the variety of instructions. Our results indicate that the model is less sensitive to the varying instructions after finetuning on a diverse set of tasks and instructions for each task.
READ FULL TEXT