Multi-Robot Coverage and Exploration using Spatial Graph Neural Networks

11/02/2020 ∙ by Ekaterina Tolstaya, et al. ∙ 0

The multi-robot coverage problem is an essential building block for systems that perform tasks like inspection or search and rescue. We discretize the coverage problem to induce a spatial graph of locations and represent robots as nodes in the graph. Then, we train a Graph Neural Network controller that leverages the spatial equivariance of the task to imitate an expert open-loop routing solution. This approach generalizes well to much larger maps and larger teams that are intractable for the expert. In particular, the model generalizes effectively to a simulation of ten quadrotors and dozens of buildings. We also demonstrate the GNN controller can surpass planning-based approaches in an exploration task.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.