Multi-Node Multi-GPU Diffeomorphic Image Registration for Large-Scale Imaging Problems

08/28/2020
by   Malte Brunn, et al.
0

We present a Gauss-Newton-Krylov solver for large deformation diffeomorphic image registration. We extend the publicly available CLAIRE library to multi-node multi-graphics processing unit (GPUs) systems and introduce novel algorithmic modifications that significantly improve performance. Our contributions comprise (i) a new preconditioner for the reduced-space Gauss-Newton Hessian system, (ii) a highly-optimized multi-node multi-GPU implementation exploiting device direct communication for the main computational kernels (interpolation, high-order finite difference operators and Fast-Fourier-Transform), and (iii) a comparison with state-of-the-art CPU and GPU implementations. We solve a 256^3-resolution image registration problem in five seconds on a single NVIDIA Tesla V100, with a performance speedup of 70 register 2048^3 resolution images (25 B unknowns; approximately 152× larger than the largest problem solved in state-of-the-art GPU implementations) on 64 nodes with 256 GPUs on TACC's Longhorn system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro