Multi-fidelity data fusion through parameter space reduction with applications to automotive engineering

10/27/2021
by   Francesco Romor, et al.
0

Multi-fidelity models are of great importance due to their capability of fusing information coming from different simulations and sensors. Gaussian processes are employed for nonparametric regression in a Bayesian setting. They generalize linear regression embedding the inputs in a latent manifold inside an infinite-dimensional reproducing kernel Hilbert space. We can augment the inputs with the observations of low-fidelity models in order to learn a more expressive latent manifold and thus increment the model's accuracy. This can be realized recursively with a chain of Gaussian processes with incrementally higher fidelity. We would like to extend these multi-fidelity model realizations to case studies affected by a high-dimensional input space but with low intrinsic dimensionality. In these cases physical supported or purely numerical low-order models are still affected by the curse of dimensionality when queried for responses. When the model's gradient information is provided, the existence of an active subspace, or a nonlinear transformation of the input parameter space, can be exploited to design low-fidelity response surfaces and thus enable Gaussian process multi-fidelity regression, without the need to perform new simulations. This is particularly useful in the case of data scarcity. In this work, we present a new multi-fidelity approach involving active subspaces and nonlinear level-set learning method. We test the proposed numerical method on two different high-dimensional benchmarks, and on a more complex car aerodynamics problem. We show how a low intrinsic dimensionality bias can increase the accuracy of Gaussian process response surfaces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro