Monolithic simulation of convection-coupled phase-change - verification and reproducibility

01/10/2018
by   Alexander G. Zimmerman, et al.
0

Phase interfaces in melting and solidification processes are strongly affected by the presence of convection in the liquid. One way of modeling their transient evolution is to couple an incompressible flow model to an energy balance in enthalpy formulation. Two strong nonlinearities arise, which account for the viscosity variation between phases and the latent heat of fusion at the phase interface. The resulting coupled system of PDE's can be solved by a single-domain semi-phase-field, variable viscosity, finite element method with monolithic system coupling and global Newton linearization. A robust computational model for realistic phase-change regimes furthermore requires a flexible implementation based on sophisticated mesh adaptivity. In this article, we present first steps towards implementing such a computational model into a simulation tool which we call Phaseflow. Phaseflow utilizes the finite element software FEniCS, which includes a dual-weighted residual method for goal-oriented adaptive mesh refinement. Phaseflow is an open-source, dimension-independent implementation that, upon an appropriate parameter choice, reduces to classical benchmark situations including the lid-driven cavity and the Stefan problem. We present and discuss numerical results for these, an octadecane PCM convection-coupled melting benchmark, and a preliminary 3D convection-coupled melting example, demonstrating the flexible implementation. Though being preliminary, the latter is, to our knowledge, the first published 3D result for this method. In our work, we especially emphasize reproducibility and provide an easy-to-use portable software container using Docker.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset