Modeling the locomotion of articulated soft robots in granular medium

03/06/2021
by   Yayun Du, et al.
0

Soft robots, in contrast to their rigid counter parts, have infinite degrees of freedom that are coupled with their interaction with the environment. We consider the locomotion of an untethered robot, in the granular medium, comprised of multiple flexible flagella that rotate about an axis by a motor. Drag from the grains causes the flagella to deform and the deformed shape generates a net forward propulsion. This external drag force depends on the shape of the flagella, while the change in flagellar shape is the result of the competition between the external loading and elastic forces. We introduce a numerical tool that couples discrete differential geometry based simulation of elastic rods - our model for flagella - and a resistive force theory based model for the drag. In parallel with simulations, we conduct experiments to quantify the propulsive speed of this class of robots. We find reasonable quantitative agreement between experiments and simulations. Owing to a rod-based kinematic representation of the robot, the simulation runs faster than real-time, and, therefore, we can use it as a design tool for this class of soft robots. We find that there is an optimal rotational speed at which maximum efficiency is achieved. Moreover, both experiments and simulations show that increasing the number of flagella decreases the speed of the robot. We also gain insight into the mechanics of granular medium - while resistive force theory can successfully describe the propulsion at low number of flagella, it fails when more flagella are added to the robot.

READ FULL TEXT

page 5

page 6

page 7

page 8

page 9

page 11

page 12

page 13

research
12/27/2021

Mechanics-based Analysis on Flagellated Robots

We explore the locomotion of soft robots in granular medium (GM) resulti...
research
03/09/2021

Simple Flagellated Soft Robot for Locomotion near Air-Fluid Interface

A wide range of microorganisms, e.g. bacteria, propel themselves by rota...
research
10/07/2018

Control of uniflagellar soft robots at low Reynolds number using buckling instability

In this paper, we analyze the inverse dynamics and control of a bacteria...
research
09/15/2021

Whole-Body Control with Motion/Force Transmissibility for Parallel-Legged Robot

Whole-body control (WBC) has been applied to the locomotion of legged ro...
research
09/12/2019

The Soft Landing Problem: Minimizing Energy Loss by a Legged Robot Impacting Yielding Terrain

Enabling robots to walk and run on yielding terrain is increasingly vita...
research
01/27/2022

An experimental data-driven mass-spring model of flexible Calliphora wings

Insect wings can undergo significant deformation during flapping motion ...
research
02/22/2022

A Novel Soft Shape-shifting Robot with Track-based Locomotion for In-pipe Inspection

With the advent of soft robotics the research community has been explori...

Please sign up or login with your details

Forgot password? Click here to reset