Minutia Texture Cylinder Codes for fingerprint matching

07/06/2018
by   Wajih Ullah Baig, et al.
0

Minutia Cylinder Codes (MCC) are minutiae based fingerprint descriptors that take into account minutiae information in a fingerprint image for fingerprint matching. In this paper, we present a modification to the underlying information of the MCC descriptor and show that using different features, the accuracy of matching is highly affected by such changes. MCC originally being a minutia only descriptor is transformed into a texture descriptor. The transformation is from minutiae angular information to orientation, frequency and energy information using Short Time Fourier Transform (STFT) analysis. The minutia cylinder codes are converted to minutiae texture cylinder codes (MTCC). Based on a fixed set of parameters, the proposed changes to MCC show improved performance on FVC 2002 and 2004 data sets and surpass the traditional MCC performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro