Maximum Likelihood Constraint Inference from Stochastic Demonstrations

02/24/2021
by   David L. McPherson, et al.
12

When an expert operates a perilous dynamic system, ideal constraint information is tacitly contained in their demonstrated trajectories and controls. The likelihood of these demonstrations can be computed, given the system dynamics and task objective, and the maximum likelihood constraints can be identified. Prior constraint inference work has focused mainly on deterministic models. Stochastic models, however, can capture the uncertainty and risk tolerance that are often present in real systems of interest. This paper extends maximum likelihood constraint inference to stochastic applications by using maximum causal entropy likelihoods. Furthermore, we propose an efficient algorithm that computes constraint likelihood and risk tolerance in a unified Bellman backup, allowing us to generalize to stochastic systems without increasing computational complexity.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 10

09/10/2021

Discretizing Dynamics for Maximum Likelihood Constraint Inference

Maximum likelihood constraint inference is a powerful technique for iden...
09/12/2019

Maximum Likelihood Constraint Inference for Inverse Reinforcement Learning

While most approaches to the problem of Inverse Reinforcement Learning (...
06/06/2016

Neural computation from first principles: Using the maximum entropy method to obtain an optimal bits-per-joule neuron

Optimization results are one method for understanding neural computation...
10/20/2010

Maximum Likelihood Joint Tracking and Association in a Strong Clutter without Combinatorial Complexity

We have developed an efficient algorithm for the maximum likelihood join...
12/15/2010

Adaptive Parallel Tempering for Stochastic Maximum Likelihood Learning of RBMs

Restricted Boltzmann Machines (RBM) have attracted a lot of attention of...
12/19/2017

Approximate Profile Maximum Likelihood

We propose an efficient algorithm for approximate computation of the pro...
07/11/2018

Learning Singularity Avoidance

With the increase in complexity of robotic systems and the rise in non-e...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.