Making Laplacians commute

07/19/2013
by   Michael M. Bronstein, et al.
0

In this paper, we construct multimodal spectral geometry by finding a pair of closest commuting operators (CCO) to a given pair of Laplacians. The CCOs are jointly diagonalizable and hence have the same eigenbasis. Our construction naturally extends classical data analysis tools based on spectral geometry, such as diffusion maps and spectral clustering. We provide several synthetic and real examples of applications in dimensionality reduction, shape analysis, and clustering, demonstrating that our method better captures the inherent structure of multi-modal data.

READ FULL TEXT

page 12

page 18

page 19

page 20

page 21

page 22

research
09/11/2012

Multimodal diffusion geometry by joint diagonalization of Laplacians

We construct an extension of diffusion geometry to multiple modalities t...
research
02/13/2023

Kernelized Diffusion maps

Spectral clustering and diffusion maps are celebrated dimensionality red...
research
11/14/2017

Quantum transport senses community structure in networks

Quantum time evolution exhibits rich physics, attributable to the interp...
research
05/27/2017

Dimensionality reduction for acoustic vehicle classification with spectral clustering

Classification of vehicles has broad applications, ranging from traffic ...
research
08/18/2021

Clustering dynamics on graphs: from spectral clustering to mean shift through Fokker-Planck interpolation

In this work we build a unifying framework to interpolate between densit...
research
06/06/2013

Diffusion map for clustering fMRI spatial maps extracted by independent component analysis

Functional magnetic resonance imaging (fMRI) produces data about activit...
research
02/12/2021

Multimodal data visualization, denoising and clustering with integrated diffusion

We propose a method called integrated diffusion for combining multimodal...

Please sign up or login with your details

Forgot password? Click here to reset