Machine Learning based COVID-19 Detection from Smartphone Recordings: Cough, Breath and Speech
We present an experimental investigation into the automatic detection of COVID-19 from smartphone recordings of coughs, breaths and speech. This type of screening is attractive because it is non-contact, does not require specialist medical expertise or laboratory facilities and can easily be deployed on inexpensive consumer hardware. We base our experiments on two datasets, Coswara and ComParE, containing recordings of coughing, breathing and speech from subjects around the globe. We have considered seven machine learning classifiers and all of them are trained and evaluated using leave-p-out cross-validation. For the Coswara data, the highest AUC of 0.92 was achieved using a Resnet50 architecture on breaths. For the ComParE data, the highest AUC of 0.93 was achieved using a k-nearest neighbours (KNN) classifier on cough recordings after selecting the best 12 features using sequential forward selection (SFS) and the highest AUC of 0.91 was also achieved on speech by a multilayer perceptron (MLP) when using SFS to select the best 23 features. We conclude that among all vocal audio, coughs carry the strongest COVID-19 signature followed by breath and speech. Although these signatures are not perceivable by human ear, machine learning based COVID-19 detection is possible from vocal audio recorded via smartphone.
READ FULL TEXT