Lunar Rover Localization Using Craters as Landmarks

03/18/2022
by   Larry Matthies, et al.
7

Onboard localization capabilities for planetary rovers to date have used relative navigation, by integrating combinations of wheel odometry, visual odometry, and inertial measurements during each drive to track position relative to the start of each drive. At the end of each drive, a ground-in-the-loop (GITL) interaction is used to get a position update from human operators in a more global reference frame, by matching images or local maps from onboard the rover to orbital reconnaissance images or maps of a large region around the rover's current position. Autonomous rover drives are limited in distance so that accumulated relative navigation error does not risk the possibility of the rover driving into hazards known from orbital images. However, several rover mission concepts have recently been studied that require much longer drives between GITL cycles, particularly for the Moon. These concepts require greater autonomy to minimize GITL cycles to enable such large range; onboard global localization is a key element of such autonomy. Multiple techniques have been studied in the past for onboard rover global localization, but a satisfactory solution has not yet emerged. For the Moon, the ubiquitous craters offer a new possibility, which involves mapping craters from orbit, then recognizing crater landmarks with cameras and-or a lidar onboard the rover. This approach is applicable everywhere on the Moon, does not require high resolution stereo imaging from orbit as some other approaches do, and has potential to enable position knowledge with order of 5 to 10 m accuracy at all times. This paper describes our technical approach to crater-based lunar rover localization and presents initial results on crater detection using 3D point cloud data from onboard lidar or stereo cameras, as well as using shading cues in monocular onboard imagery.

READ FULL TEXT

page 3

page 4

page 6

page 7

page 9

page 11

page 14

page 16

research
01/03/2023

LunarNav: Crater-based Localization for Long-range Autonomous Lunar Rover Navigation

The Artemis program requires robotic and crewed lunar rovers for resourc...
research
01/11/2023

ShadowNav: Crater-Based Localization for Nighttime and Permanently Shadowed Region Lunar Navigation

There has been an increase in interest in missions that drive significan...
research
07/03/2020

LOL: Lidar-Only Odometry and Localization in 3D Point Cloud Maps

In this paper we deal with the problem of odometry and localization for ...
research
03/07/2022

Continuous Self-Localization on Aerial Images Using Visual and Lidar Sensors

This paper proposes a novel method for geo-tracking, i.e. continuous met...
research
09/29/2022

Factor Graph Fusion of Raw GNSS Sensing with IMU and Lidar for Precise Robot Localization without a Base Station

Accurate localization is a core component of a robot's navigation system...
research
10/26/2019

Robust GNSS Denied Localization for UAV Using Particle Filter and Visual Odometry

Conventional autonomous Unmanned Air Vehicle (abbr. UAV) autopilot syste...
research
04/10/2021

Error Propagation in Satellite Multi-image Geometry

This paper describes an investigation of the source of geospatial error ...

Please sign up or login with your details

Forgot password? Click here to reset