Look at my new blue force-sensing shoes!

04/14/2021
by   Yuanfeng Han, et al.
0

To function autonomously in the physical world, humanoid robots need high-fidelity sensing systems, especially for forces that cannot be easily modeled. Modeling forces in robot feet is particularly challenging due to static indeterminacy, thereby requiring direct sensing. Unfortunately, resolving forces in the feet of some smaller-sized humanoids is limited both by the quality of sensors and the current algorithms used to interpret the data. This paper presents light-weight, low-cost and open-source force-sensing shoes to improve force measurement for popular smaller-sized humanoid robots, and a method for calibrating the shoes. The shoes measure center of pressure (CoP) and normal ground reaction force (GRF). The calibration method enables each individual shoe to reach high measurement precision by applying known forces at different locations of the shoe and using a regularized least squares optimization to interpret sensor outputs. A NAO robot is used as our experimental platform. Experiments are conducted to compare the measurement performance between the shoes and the robot's factory-installed force-sensing resistors (FSRs), and to evaluate the calibration method over these two sensing modules. Experimental results show that the shoes significantly improve CoP and GRF measurement precision compared to the robot's built-in FSRs. Moreover, the developed calibration method improves the measurement performance for both our shoes and the built-in FSRs.

READ FULL TEXT

page 1

page 2

page 4

page 5

research
02/26/2022

Watch Me Calibrate My Force-Sensing Shoes!

This letter presents a novel method for smaller-sized humanoid robots to...
research
04/20/2021

How Heavy Is It? Humanoid Robot Estimating Physical Properties of Unknown Objects Without Force/Torque Sensors

Many robots utilize commercial force/torque sensors to identify physical...
research
05/26/2020

Design of a Low-cost Miniature Robot to Assist the COVID-19 Nasopharyngeal Swab Sampling

Nasopharyngeal (NP) swab sampling is an effective approach for the diagn...
research
03/20/2021

An Efficient Calibration Method for Triaxial Gyroscope

This paper presents an efficient servomotor-aided calibration method for...
research
11/07/2022

Quasi-Static Analysis on Transoral Surgical Tendon-Driven Articulated Robot Units

Wire actuation in tendon-driven continuum robots enables the transmissio...
research
07/06/2022

Low-Level Force-Control of MR-Hydrostatic Actuators

Precise and high-fidelity force control is critical for new generations ...
research
09/03/2023

Swing Leg Motion Strategy for Heavy-load Legged Robot Based on Force Sensing

The heavy-load legged robot has strong load carrying capacity and can ad...

Please sign up or login with your details

Forgot password? Click here to reset