LinkedIn's Audience Engagements API: A Privacy Preserving Data Analytics System at Scale

02/14/2020 ∙ by Ryan Rogers, et al. ∙ 0

We present a privacy system that leverages differential privacy to protect LinkedIn members' data while also providing audience engagement insights to enable marketing analytics related applications. We detail the differentially private algorithms and other privacy safeguards used to provide results that can be used with existing real-time data analytics platforms, specifically with the open sourced Pinot system. Our privacy system provides user-level privacy guarantees. As part of our privacy system, we include a budget management service that enforces a strict differential privacy budget on the returned results to the analyst. This budget management service brings together the latest research in differential privacy into a product to maintain utility given a fixed differential privacy budget.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.