Learning to Navigate by Growing Deep Networks

12/14/2017
by   Thushan Ganegedara, et al.
0

Adaptability is central to autonomy. Intuitively, for high-dimensional learning problems such as navigating based on vision, internal models with higher complexity allow to accurately encode the information available. However, most learning methods rely on models with a fixed structure and complexity. In this paper, we present a self-supervised framework for robots to learn to navigate, without any prior knowledge of the environment, by incrementally building the structure of a deep network as new data becomes available. Our framework captures images from a monocular camera and self labels the images to continuously train and predict actions from a computationally efficient adaptive deep architecture based on Autoencoders (AE), in a self-supervised fashion. The deep architecture, named Reinforced Adaptive Denoising Autoencoders (RA-DAE), uses reinforcement learning to dynamically change the network structure by adding or removing neurons. Experiments were conducted in simulation and real-world indoor and outdoor environments to assess the potential of self-supervised navigation. RA-DAE demonstrates better performance than equivalent non-adaptive deep learning alternatives and can continue to expand its knowledge, trading-off past and present information.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro