Learning Self-adaptations for IoT Networks: A Genetic Programming Approach

05/09/2022
by   Jia Li, et al.
0

Internet of Things (IoT) is a pivotal technology in application domains that require connectivity and interoperability between large numbers of devices. IoT systems predominantly use a software-defined network (SDN) architecture as their core communication backbone. This architecture offers several advantages, including the flexibility to make IoT networks self-adaptive through software programmability. In general, self-adaptation solutions need to periodically monitor, reason about, and adapt a running system. The adaptation step involves generating an adaptation strategy and applying it to the running system whenever an anomaly arises. In this paper, we argue that, rather than generating individual adaptation strategies, the goal should be to adapt the logic / code of the running system in such a way that the system itself would learn how to steer clear of future anomalies, without triggering self-adaptation too frequently. We instantiate and empirically assess this idea in the context of IoT networks. Specifically, using genetic programming (GP), we propose a self-adaptation solution that continuously learns and updates the control constructs in the data-forwarding logic of SDN-based IoT networks. Our evaluation, performed using open-source synthetic and industrial data, indicates that, compared to a baseline adaptation technique that attempts to generate individual adaptations, our GP-based approach is more effective in resolving network congestion, and further, reduces the frequency of adaptation interventions over time. In addition, we compare our approach against a standard data-forwarding algorithm from the network literature, demonstrating that our approach significantly reduces packet loss.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
06/01/2023

Using Genetic Programming to Build Self-Adaptivity into Software-Defined Networks

Self-adaptation solutions need to periodically monitor, reason about, an...
research
06/29/2020

Flexible IoT Datapath Programming using P4

The progress of the network and device technologies enables any device t...
research
05/10/2020

Correct and Control Complex IoT Systems: Evaluation of a Classification for System Anomalies

In practice there are deficiencies in precise interteam communications a...
research
05/29/2019

Dynamic Adaptive Network Configuration for IoT Systems: A Search-based Approach

The concept of Internet of Things (IoT) has led to the development of ma...
research
07/13/2021

Q-SMASH: Q-Learning-based Self-Adaptation of Human-Centered Internet of Things

As the number of Human-Centered Internet of Things (HCIoT) applications ...
research
09/07/2021

Self-adaptive Architectures in IoT Systems: A Systematic Literature Review

Over the past few years, the relevance of the Internet of Things (IoT) h...
research
04/13/2022

Deep Learning for Effective and Efficient Reduction of Large Adaptation Spaces in Self-Adaptive Systems

Many software systems today face uncertain operating conditions, such as...

Please sign up or login with your details

Forgot password? Click here to reset