Learning Quadruped Locomotion using Bio-Inspired Neural Networks with Intrinsic Rhythmicity

05/12/2023
by   Chuanyu Yang, et al.
0

Biological studies reveal that neural circuits located at the spinal cord called central pattern generator (CPG) oscillates and generates rhythmic signals, which are the underlying mechanism responsible for rhythmic locomotion behaviors of animals. Inspired by CPG's capability to naturally generate rhythmic patterns, researchers have attempted to create mathematical models of CPG and utilize them for the locomotion of legged robots. In this paper, we propose a network architecture that incorporates CPGs for rhythmic pattern generation and a multi-layer perceptron (MLP) network for sensory feedback. We also proposed a method that reformulates CPGs into a fully-differentiable stateless network, allowing CPGs and MLP to be jointly trained with gradient-based learning. The results show that our proposed method learned agile and dynamic locomotion policies which are capable of blind traversal over uneven terrain and resist external pushes. Simulation results also show that the learned policies are capable of self-modulating step frequency and step length to adapt to the locomotion velocity.

READ FULL TEXT

page 1

page 7

research
03/20/2020

Stance Control Inspired by Cerebellum Stabilizes Reflex-Based Locomotion on HyQ Robot

Advances in legged robotics are strongly rooted in animal observations. ...
research
01/24/2021

Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of legged robots

In recent years, locomotion mechanisms exhibited by vertebrate animals h...
research
02/07/2020

Adaptive control for hindlimb locomotion in a simulated mouse through temporal cerebellar learning

Human beings and other vertebrates show remarkable performance and effic...
research
07/23/2021

Bio-inspired Rhythmic Locomotion in a Six-Legged Robot

Developing a framework for the locomotion of a six-legged robot or a hex...
research
08/16/2022

Generating a Terrain-Robustness Benchmark for Legged Locomotion: A Prototype via Terrain Authoring and Active Learning

Terrain-aware locomotion has become an emerging topic in legged robotics...
research
11/01/2022

CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

In this letter, we present a method for integrating central pattern gene...

Please sign up or login with your details

Forgot password? Click here to reset