Learning Physics-Consistent Particle Interactions

02/01/2022
by   Zhichao Han, et al.
0

Interacting particle systems play a key role in science and engineering. Access to the governing particle interaction law is fundamental for a complete understanding of such systems. However, the inherent system complexity keeps the particle interaction hidden in many cases. Machine learning methods have the potential to learn the behavior of interacting particle systems by combining experiments with data analysis methods. However, most existing algorithms focus on learning the kinetics at the particle level. Learning pairwise interaction, e.g., pairwise force or pairwise potential energy, remains an open challenge. Here, we propose an algorithm that adapts the Graph Networks framework, which contains an edge part to learn the pairwise interaction and a node part to model the dynamics at particle level. Different from existing approaches that use neural networks in both parts, we design a deterministic operator in the node part. The designed physics operator on the nodes restricts the output space of the edge neural network to be exactly the pairwise interaction. We test the proposed methodology on multiple datasets and demonstrate that it achieves considerably better performance in inferring correctly the pairwise interactions while also being consistent with the underlying physics on all the datasets than existing purely data-driven models. The developed methodology can support a better understanding and discovery of the underlying particle interaction laws, and hence guide the design of materials with targeted properties.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset