Learning Personalized Thermal Preferences via Bayesian Active Learning with Unimodality Constraints
Thermal preferences vary from person to person and may change over time. The objective of this paper is to sequentially pose intelligent queries to occupants in order to optimally learn the room temperatures which maximize their satisfaction. Our central hypothesis is that an occupant's preference relation over room temperatures can be described using a scalar function of these temperatures, which we call the "occupant's thermal utility function". Information about an occupant's preference over room temperatures is available to us through their response to thermal preference queries : "prefer warmer," "prefer cooler" and "satisfied" which we interpret as statements about the derivative of their utility function, i.e. the utility function is "increasing", "decreasing" and "constant" respectively. We model this hidden utility function using a Gaussian process with a built-in unimodality constraint, i.e., the utility function has a unique maximum, and we train this model using Bayesian inference. This permits an expected improvement based selection of next preference query to pose to the occupant, which takes into account both exploration (sampling from areas of high uncertainty) and exploitation (sampling from areas which are likely to offer an improvement over current best observation). We use this framework to sequentially design experiments and illustrate its benefits by showing that it requires drastically fewer observations to learn the maximally preferred room temperature values as compared to other methods. This framework is an important step towards the development of intelligent HVAC systems which would be able to respond to individual occupants' personalized thermal comfort needs. In order to encourage the use of our PE framework and ensure reproducibility in results, we publish an implementation of our work named GPPrefElicit as an open-source package in the Python language .
READ FULL TEXT